据复旦大学官微消息,近日,复旦大学纤维电子材料与器件研究院、高分子科学系、先进材料实验室、聚合物分子工程全国重点实验室彭慧胜、陈培宁团队突破传统芯片硅基研究范式,率先提出并制备“纤维芯片”,在弹性的高分子纤维内实现大规模集成电路,成功将供电、传感、显示、信号处理等多功能集成于一根纤维之内,为纤维电子系统开辟全新的集成路径。
该成果于1月22日以《基于多层旋叠架构的纤维集成电路》(“Fibre integrated circuits by multilayered spiral architecture”)为题发表于《自然》(Nature)期刊,有望为脑机接口、电子织物、虚拟现实等新兴产业提供强有力的技术支撑。
据介绍,团队跳出“仅利用纤维表面”的惯性思维,提出多层旋叠架构的设计思路,即在纤维内部构建多层集成电路,形成螺旋式旋叠结构,从而最大化地利用纤维内部空间。论文共同一作、先进材料实验室博士研究生王臻形容道:“我们借鉴‘卷寿司’的方法,先在弹性高分子表面完成高精度微纳加工,再把它‘卷’成纤维形态,形成多层旋叠架构。”

“纤维芯片”显示多层旋叠架构的三维重构荧光标记照片(图源:复旦大学)
团队先后攻克了高分子表面平整化、耐溶剂侵蚀、形变下电路稳定等多个技术难题。这款“纤维芯片”不仅保持了纤维柔软、可编织的本征特性,更实现了电阻、电容、二极管、晶体管等电子元件的高精度互连,光刻精度达到了实验室级光刻机最高水平。这意味着,基于“纤维芯片”,未来可将发光、传感等模块直接集成在一根纤维上,形成无需外接设备的全闭环系统,甚至实现自供能。
陈培宁称,团队通过研制原型装置,建立了标准化制备路线,初步实现“纤维芯片”的实验室级规模化制备。制备出的“纤维芯片”可承受1毫米半径弯曲、20%拉伸形变,水洗、卡车碾压后性能依然稳定。通过晶体管与电容、电阻等电子元件高效互连,“纤维芯片”可实现数字、模拟电路运算等功能,集成有机电化学晶体管后,还可完成神经计算任务。
实验推算显示,按照目前实验室级1微米的光刻加工精度,长度为1毫米的“纤维芯片”可集成数万个晶体管,其信息处理能力可与一些医疗植入式芯片相当。若“纤维芯片”长度扩展至1米,其集成晶体管数量有望提升至百万级别,达到与经典计算机中央处理器相当的集成水平。