主流 5G 芯片厂商对比, 谁将胜出?

这一年,5G 从未来快速走到了我们眼前。此前十年中,以3G 和4G 为核心的通信技术 让移动互联网发展势头良好,但是用户红利逐渐褪去,伴随而来的是一个万物互联时 代,这意味着4G 时代即将过去,而5G 则让万物互联成为现实。

我国 5G 研发是从 2012 年开始,是由工信部指导,IMT-2020(5G)推进组负责全面组织实施。根据计划,在 2016 年-2018 年主要进行 5G 技术研发试验,2019 年-2020 年会进行 5G 产品研发试验。

体系庞大 各司其职

5G 技术的核心在于芯片,无论是基站还是手机,都需要它。包括计算芯片、存储芯片、控制芯片、智能手机芯片、基带芯片等,这是一个庞大的体系。

服务器、核心网、基站等都需要计算芯片。除了少数服务器芯片,我国有一定的产品,绝大部分计算芯片基本上是美国企业称霸世界。

无论是服务器还是云,都是需要大量存储,5G的高速度、大流量自然会带来存储的大量需要。目前在存储芯片领域,美国、韩国、中国台湾等居于主导地位。

移动通信最重要的一个终端就是智能手机、智能手机芯片,不仅要进行计算,还要进行专门的处理,比如 GPU 进行图像处理,NPU 进行 AI 处理,智能手机芯片还需要体积小、功耗低等特性。华为、苹果、三星等都在研发自己的旗舰机芯片。

美国优势明显 中国不断突破

在 5G 芯片领域, 美国占据了较大的优势, 而欧洲稍有衰落。中国正在加大加量寻求突破, 企业的整体实力与全球通讯芯片巨头的差距在于高端 5G 芯片领域, 这也是很多国内芯片企业的"芯病"。接下来, 我们就来看看关于 5G 芯片的那些重要厂商。

英特尔

在英特尔眼中,5G是一个真正融合计算和通信的时代。英特尔的计算能力我们都已了解,自1978年英特尔推出 x86 架构的鼻祖产品8086微处理器芯片,英特尔就一直站在计算舞台中央,计算能力的冗余还不能满足各种场景,尤其是边缘场景的计算需求,网络能力同样不能做到极致的传输。

5G 让计算和网络进一步融合,对英特尔来说可能是移动通信时代之后的又一个契机。它也是华为和中兴最重要的供应商。

英特尔近日推出了 5G 调制解调器 XMM8160, 为手机和宽带接入网关等设备提供 5G 连接而优化的多模调制解调器,是市面上最新 LTE 调制解调器的 3 到 6 倍,带来各种特性和体验,加速 5G 普及。

此外, 英特尔与华为成功完成全球首个 2.6GHz 频段基于 3GPP 标准 SA 架构的 5G 互操作性测试, 使用英特尔 5G 移动试验平台和华为支持 2.6GHz 频段、160MHz 大带宽的 5G NR 商用版本, 基于 SA 架构, 双方联合测试并成功打通首次呼叫。为大规模商用打下基础, 也必将大幅推动 2.6G 频段 5G 端到端产业的加速发展和成熟。

高通

高通多年前就在积极探索和发展 5G 技术, 并联合产业链资源来共同推动应用落地。

最先公布 5g 基带芯片的是美国高通,在 5G 标准第一版本还没有确定的时候,高通已经公布了其 5G 基带芯片 X50,采用 28 纳米工艺制程。

高通的 5G 基带芯片制程较落后,在最新工艺制程已经进入 7 纳米年代,还在采用落后的 28 纳米工艺,对手机整体的功耗和 pcb 的面积都有较大影响。

此外,高通全集成 5G 新空口毫米波及 6GHz 以下射频模组还获得世界互联网领先科技成果奖。高通 QTM052 移动毫米波天线模块包含 5G NR 无线收发器、电源管理集成电路 (IC)、射频前端组件和相控天线阵,同时支持骁龙 X50 5G 调制解调器。

联发科

联发科也加入到5G领域的竞争当中,宣布其首款5G基带芯片MTK Helio M70将于2019年上半年上市。 Helio M70结合开放架构的 NeuroPilot AI 平台,联发科也将从移动设备扩展到更多终端领域。

Helio M70 不仅支持 5G NR, 还可同时支持独立组网及非独立组网 , 并支持 Sub-6GHz 频段、高功率终端及其他 5G 关键技术,符合 3GPP Release 15 的最新标准规范,具备 5Gbps 传输速率。

未来, 联发科将利用 5G、AI 进一步将应用面逐步扩充, 在手机或智能生活等领域给使用者最佳的体验。

华为

华为在2018年2月发布了巴龙5G01和基于该芯片的首款3GPP标准5G商用终端CPE, 巴龙5G01和英特尔芯片一样支持Sub-6GHz和毫米波,兼容2g/3g/4g网络。华为的 巴龙5G01并非针对手机开发,主要应用在小型网络终端产品上。针对移动端的5G芯片,华为计划在2019年推出。

同时,华为已经开始着手海思 1020 全新一代 5G 处理器的研发工作,这将是国内首款拥有自主知识产权的的 5G 芯片。

虽然华为已经推出 CPE 版本, 但是在移动芯片方面, 仍然是落后于高通和英特尔。

紫光展锐

从 1G 到 4G, 紫光展锐一步一步在缩短差距, 并表示到 5G 时代基本可以与国外同步。目前, 展锐每年全球出货超过 6 亿套片, 市场份额占比在 25%左右, 在非全网通市场有不错的表现。

据了解,紫光展锐 5G 单模芯片方案已经通过认证,双模方案正在认证当中。它将在2019年推出高性价比 5G 芯片,并在 2020年推出高性价 5G 单芯片,而且将实现高端、中端全覆盖。此外,紫光展锐也在布局 5G 毫米波和 RFFE。

除了计算、存储、控制芯片之外,感应器是一个半导体领域的新机会,现在智能手机中,已经有大量感应器,而 5G 智能终端中的感应器会更多,能力会更强。这个领域是全世界半导体领域争夺的一个焦点。除了恩智浦、村田制作所等大厂,还有大量中小企业在这个领域希望有所作为。

总结

英特尔在 4GLTE 芯片已经打入苹果供应链,加上笔记本厂商也有意向搭载 5G 芯片,英特尔可以借助在笔记本行业的优势进行卡位。

高通除了 5G 基带芯片已有方案外, 在模拟前端, 如天线、放大器与滤波器等方案, 也有相当完整的布局, 所以高通再进一步推出 5G 移动产品的模组方案, 短期内没有竞争对手。

值得一提的是,在 5G 专用芯片领域,并不是完全被美国企业垄断,我国也有较大的进步,华为海思、紫光展锐、中兴微电子等企业都设计和生产专用芯片。

特别是,华为在 3GPP 领域拥很大程度的话语权,5G 标准制定的态度也十分积极。2019 年到 2020 年,华为将有机会赶上英特尔和高通的脚步。

来源:全球物联网观察